In-situ Reactive Interfacial Compatibilization and Properties of Polylactide/Sisal Fiber Biocomposites via Melt-blending with Epoxy-functionalized Oligomer

نویسندگان

  • Mingyang Hao
  • Hongwu Wu
  • Feng Qiu
  • Xiwen Wang
چکیده

To improve the interfacial bonding of sisal fiber reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with the addition of an epoxy-functionalized oligomer (ADR). The FTIR analysis and SEM characterization demonstrated that PLA molecular chain was bonded to the fiber surface and epoxy-functionalized oligomer played a hinge-like role between sisal fibers and PLA matrix, which resulted in improved interfacial adhesion between fibers and PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of ADR oligomer, which in turn reflected the improved interfacial interaction between SF and PLA matrix. These conclusions were further investigated by the calculated activation energies of glass transition relaxation (△Ea) of composites via dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened via addition of ADR oligomer. The interfacial interaction and structure-properties relationship of composites are key points of this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer

To improve the interfacial bonding of sisal fiber-reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with addition of a commercial grade epoxy-functionalized oligomer Joncryl ADR@-4368 (ADR). The FTIR (Fourier Transform infrared spectroscopy) analysis and SEM (scanni...

متن کامل

Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization.

Polylactide and poly(butylene succinate-co-adipate) (PLA/PBSA) were melt-blended in the presence of triphenyl phosphite (TPP). An increase in the torque during melt mixing was used to monitor the changes in viscosity as compatibilization of the blends occurred. Scanning electron micrographs showed not only a reduction in the dispersed-phase size with increased TPP content but also fibrillated l...

متن کامل

Influence of Fiber Content on Properties of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposites

Biodegradable and environmentally friendly biocomposites produced by a combination of biodegradable thermoplastics and natural fiber have gained increasing interest in recent years. In this work, eco-friendly biocomposites made from poly(butylene succinate) (PBS) and different weight percentages (10, 30, 50, and 70 wt%) of oil palm mesocarp fiber (OPMF) were fabricated via a melt blending proce...

متن کامل

Compatibilization of polycarbonate/poly (ethylene terephthalate) blends by addition of their transesterification product

In this study, poly carbonate (PC) and poly (ethylene terephthalate) (PET) were reactive melt-blended under two different conditions to produce PC/PET copolymers. For each condition, samples were taken at specified mixing times representative a specific structure of copolymers and each one employed to physically compatibilize a PC/PET blend with a fixed composition. Reactive blending and copoly...

متن کامل

Effect of Electron Beam Irradiation on the Tensile Properties of Oil Palm Mesocarp Fibre/poly(butylene Succinate) Biocomposites

The present work deals with the utilization of oil palm mesocarp fibre (OPMF) and poly(butylene succinate) (PBS) to produce cost-effective biodegradable materials. The biocomposite was prepared from OPMF and PBS at a weight ratio of 70:30 via a melt blending technique without addition of any additive. This biocomposite showed relatively low tensile and water resistance properties. As a conseque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018